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Abstract
Toxicokinetic–toxicodynamic (TKTD) modeling is essential to make sense of the time dependence of toxic effects, and to

interpret and predict consequences of time‐varying exposure. These advantages have been recognized in the regulatory
arena, especially for environmental risk assessment of pesticides, where time‐varying exposure is the norm. We critically
evaluate the link between the modeled variables in TKTD models and the observations from laboratory ecotoxicity tests. For
the endpoint reproduction, this link is far from trivial. The relevant TKTD models for sublethal effects are based on dynamic
energy budget (DEB) theory, which specifies a continuous investment flux into reproduction. In contrast, experimental tests
score egg or offspring release by the mother. The link between model and data is particularly troublesome when a species
reproduces in discrete clutches and, even more so, when eggs are incubated in the mother's brood pouch (and release of
neonates is scored in the test). This situation is quite common among aquatic invertebrates (e.g., cladocerans, amphipods,
mysids), including many popular test species. In this discussion paper, we treat these and other issues with reproduction
data, reflect on their potential impact on DEB‐TKTD analysis, and provide preliminary recommendations to correct them.
Both modelers and users of model results need to be aware of these complications, as ignoring them could easily lead to
unnecessary failure of DEB‐TKTD models during calibration, or when validating them against independent data for other
exposure scenarios. Integr Environ Assess Manag 2022;18:479–487. © 2021 SETAC
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INTRODUCTION
Toxicokinetic–toxicodynamic (TKTD) modeling offers many

advantages over descriptive methods for data analysis and the
prediction of ecotoxicological effects. In fact, it is the only
approach to make sense of the time dependence of toxic
effects, to interpret and predict consequences of time‐varying
exposure, and to allow meaningful comparisons between
chemicals and species (Ashauer & Escher, 2010; Jager
et al., 2006). These advantages have been recognized in the
regulatory arena, which has led to a Scientific Opinion from
the European Food Safety Authority (EFSA) regarding the use
of TKTD modeling for application in risk assessment of pesti-
cides in Europe (EFSA, 2018). This opinion provides a frame-
work for TKTD modeling within this specific context. For
the analysis of sublethal effects, the relevant TKTD models

are based on dynamic energy budget (DEB) theory
(Kooijman, 2001). There is no single unique DEB model for
toxic effects but rather a family of closely related models,
generally referred to as DEBtox, or more recently as DEB‐
TKTD (Jager et al., 2014; Sherborne et al., 2020). Although
these models were judged to be “not yet ready for use in
aquatic risk assessment for pesticides” (EFSA, 2018), their
potential for supporting risk assessment was recognized. One
of the main reasons for concluding that DEB‐TKTD models
were not ready was a lack of published case studies for pes-
ticides, with aquatic organisms, and including time‐varying
exposure. What is also lacking, yet has been overlooked, is
detailed guidance on how to perform a meaningful analysis
with DEB‐TKTD models, considering the nature of the avail-
able toxicity data. Clearly, standard protocols for experimental
tests have not been developed with the possibilities and re-
quirements of TKTD models in mind.
In this discussion paper, we treat various aspects of the

link between the modeled processes in DEB‐TKTD models
and routine observations on reproduction. The main issues
are related to the fact that the model specifies the invest-
ment into reproduction, as a continuous flux of mass or
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energy (Figure 1). Experimental tests cannot directly quan-
tify this investment and instead score egg or offspring re-
lease from the mother. For species that produce relatively
small eggs, one at a time, we can usually safely ignore these
details: the differences with a continuous mass flux will be
rather trivial. However, many aquatic invertebrates produce
clutches of eggs, and many also incubate the eggs in a
brood pouch until hatching. Species orders that do both are
cladocerans, amphipods, and mysids, which include popular
test species such as Daphnia magna, Ceriodaphnia dubia,
Americamysis bahia, and Hyalella azteca. The water flea
D. magna will serve as an example throughout this dis-
cussion. Under standard test conditions, this species pro-
duces a clutch of eggs every three days, closely linked to the
molt cycle. Allocation of resources towards reproduction is
continuous, so these resources are stored by the mother in a
reproduction buffer, which is converted into eggs at
spawning events (see Tessier & Goulden, 1982). The eggs
are incubated in a brood pouch and released at the next
molt when a new clutch of eggs is deposited in the brood
pouch. The reproduction buffer and the brood‐pouch in-
cubation imply a considerable delay between the invest-
ment into reproduction and the observations on neonate
release. Because this buffer and brood pouch are not rep-
resented in standard DEB‐TKTD models, a temporal mis-
match occurs that can easily lead to failure of TKTD
modeling in risk assessments following EFSA's workflow
(EFSA, 2018).

These complications were recognized in the earliest DEBtox
work on D. magna (Kooijman & Bedaux, 1996), but it was
proposed to largely ignore them. The modeled mass flux is
instantaneously translated into a continuous egg‐production
rate, and that rate is cumulated over time. This cumulated egg
production is then compared with the cumulated counts of
released neonates over time. Since then, this procedure has
been used in almost all DEB‐based analyses of toxicity data
(forDaphnia, e.g., Billoir et al., 2011; Jager et al., 2006; Pieters
et al., 2006). However, with the increasing interest in DEB‐
TKTD for pesticide risk assessment, it is important to scrutinize
this procedure and explore alternatives. For pesticides, time‐
varying exposure is the norm, and pulsed exposure is pro-
posed for TKTD model calibration or validation (EFSA, 2018).
Toxicokinetic–toxicodynamic modeling explicitly considers
the time‐course of the processes underlying toxicity, so it is
important to carefully match the timing of the toxic effects to
the timing of the exposure events. In this contribution, we
discuss these and some other issues with reproduction data,
reflect on their potential impact on TKTD analysis with DEB
models, and provide some preliminary recommendations to
ensure effective application of TKTD modeling.

MAIN ISSUES IN MORE DETAIL
Here, we discuss the problems for clutch‐wise spawning

and brood‐pouch delays in general. In the supporting in-
formation we present model fits on an artificial dataset,
providing an example of the extent of bias caused by ig-
noring these issues in a specific case. We used an artificial
dataset, because this allows us certainty about the true un-
derlying mechanisms and their dynamics, something that is
generally impossible for real data.

Clutch‐wise spawning

Here, we start by considering a test species for which
produced eggs are counted as reproduction; considerations
for the brood pouch will be added in the Brood‐pouch in-
cubation section. Figure 1 shows the basic structure of a DEB
model for an adult animal. For any mechanistic model, the
modeled fluxes and state variables may not be easily meas-
urable, requiring auxiliary hypotheses to link modeled varia-
bles to measured ones (see Kooijman, 2018). Egg release
(spawning) is easy to score in many animals, but egg counts
cannot be directly related to the reproduction mass flux in the
model. The most common set of auxiliary hypotheses for
DEB‐TKTD modeling (see, e.g., supporting information of
Jager, 2020) has always been to (implicitly) assume that the
mass allocated towards reproduction is instantly converted
into eggs (with a certain efficiency), that eggs have a constant
mass, and that we can safely ignore the discrete nature of
egg counts. Expressing both the modeled egg‐production
rate and the measured egg counts cumulatively over time
allows for straightforward comparison between the con-
tinuous investment flux of the model and the discrete egg
counts at regular time points.

Clutch‐wise spawning will lead to a step‐like pattern in
the data owing to the presence of zero‐reproduction
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FIGURE 1 Schematic representation of the mass flows for an adult individual
in a typical dynamic energy budget (DEB) model. The κ represents a constant
split between the somatic pathway (growth and somatic maintenance) and
the reproductive pathway (maturity maintenance and reproduction). Arrows
are mass fluxes and boxes are state variables. Simplified DEB models exclude
the reserve state

480 Integr Environ Assess Manag 18, 2022—JAGER ET AL.



observations at observation times between clutches
(Figure 2A). The blue dots indicate observations on egg
production that have been cumulated over time. If we fit
a DEB model to these data, assuming continuous re-
production (i.e., no reproduction buffer in the model), the
model curve (solid line) will be a compromise between all
data points. However, not all data points carry information
about cumulative investment in reproduction. At an ob-
servation point where an egg clutch was produced, we have
unbiased information about the cumulative investment in
reproduction up to that time point. When no eggs are ob-
served, the data point for cumulative reproduction stays the
same as the one at the previous time point. There will have
been investment into reproduction (stored in a reproduction
buffer), but we cannot quantify it because no eggs
were produced. Taking the observed reproductive output at
face value, and plotting it in a stepwise graph (Figure 2A,
blue dots), assumes that there has been no investment at all
at these time points. Figure 2A shows that the fit of a model
to this stepwise data leads to bias in the parameter
estimation: most datapoints underestimate the cumulative
reproductive investment and, as a consequence, the fitted
model curve is biased and lags behind the real investment
into reproduction. Additionally, the residual variance will be
exaggerated (compare the distance between the model
curve and the filled blue symbols in Figure 2A and B), with
consequences for statistical inference.

These issues can be addressed by modifying the model by
including a reproduction buffer and spawning rules (see e.g.,
Pecquerie et al., 2009), or by censoring the dataset. The latter
option is the simplest and implies that we remove the time
points without observed egg production (Figure 2B). This will
shift the fitted curve to the left compared with Figure 2A,
because the data are now more representative for the in-
vestment into reproduction. Some zero observations do carry
information and need to be kept in the dataset: the time
points where we can be quite certain that there is indeed no
investment in egg production yet because the animals are still
juvenile. Deciding which zeros to keep is somewhat arbitrary
but should be based on organism physiology. In general, we
would propose to keep as zero all observations on juveniles,
sensu DEB (before investment in reproduction starts). We can
estimate the start of reproductive investment from the time of
the first spawning event, minus the average (or initial) spacing
between spawning events. The model can then be fitted to
only the remaining data points (black line through filled blue
dots in Figure 2B). There may also be true zeros later in the life
cycle (after one or more spawning events). Especially when
there is considerable toxic stress on the organisms, invest-
ment in reproduction may truly stop. This is a trickier problem
because a lack of observations on neonate release implies
neither that the reproductive investment is zero nor that the
reproduction buffer is empty (though it will likely be low). In
line with the initial zeros for juveniles, we may also keep some
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FIGURE 2 Illustrating the problems with fitting dynamic energy budget (DEB) models on cumulated offspring for a species that reproduce in clutches. The data
points can represent an individual mother or a cohort that is perfectly synchronized. (A) and (B) deal with a species for which egg production is followed over
time; we can fit all data (A) or exclude observations without spawning events (B). (C) and (D) deal with a species that deposits eggs in a brood pouch, and
neonate release is scored. Egg production precedes neonate release by some amount of time (C), and it makes sense to fit the model on the (estimated) egg‐
production observations rather than on neonate release (D). Filled blue circles: observed data included in model fit (release of neonates in (C) and (D); empty
blue circles: excluded data (no spawning or release of neonates); yellow circles: estimated production of egg clutch; black line: fitted model
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zero observations after the last spawning event, accounting
for the average spacing between spawning events.
This procedure of data censoring is only possible if ani-

mals were kept individually in the test, or if they are perfectly
synchronized. The mean cumulative reproduction of a group
of animals may not show such a clear stepwise pattern,
precluding removal of zero observations. The bias in the
model fit will still be there, though it will be less obvious
because the means can give the appearance of continuous
reproduction. Extending the model is still an option, though
its benefits need to be weighed against the disadvantages
of increased model complexity and the numerical issues of
fitting a model with discontinuities on more‐or‐less con-
tinuous means.
Interestingly, the fact that not all observations of egg

production carry the same amount of information also im-
plies that the temporal resolution of reproduction data is
limited by the spawning cycle. Increasing the number of
observations in time will provide greater precision on
the timing of the spawning events, but will not increase the
number of relevant data points. Referring to Figure 2B,
we will obtain more empty blue symbols, but not more of
the relevant filled blue symbols.

Brood‐pouch incubation

For species that incubate their eggs in a brood pouch, we
have an additional problem: what is observed in the ex-
perimental test is the number of released neonates. How-
ever, neonate release obviously occurs later in time than the
production of the egg. This is illustrated in Figure 1C; the
yellow points indicate the time of the production of an egg
clutch, which precedes the release of neonates (filled blue
points). For TKTD modeling, it makes sense to fit the model
to the (estimated or observed) egg‐production events, ex-
cluding the zeros as explained in the Clutch‐wise spawning
section. These data points will have a much closer corre-
spondence to what is modeled, namely the resource in-
vestment into reproduction. Shifting the time vector of the
reproduction data was (to our knowledge) first proposed for
D. magna by Jager and Zimmer (2012). These authors
shifted the model predictions (rather than the data, as il-
lustrated in Figure 1D) by the average length of the inter-
molt period.
The brood‐pouch delay can be incorporated by shifting

the model prediction (such that the model output repre-
sents neonate release) or by shifting the data (such that the
observations represent egg production). Shifting the model
prediction is only attractive when the shift (i.e., the time
between egg production and neonate release) can be taken
constant over the test, across individuals, and across the
treatments. If the shift is not constant, it is more transparent
to modify the time vector of the reproduction data to rep-
resent the most plausible points of egg production. In
D. magna, neonate release and egg production occur at the
molts, which offers a straightforward approach to dealing
with the data: we can shift the observations on neonate
release back to the previous release event (or the previous

molt), for each individual separately. Again, such a proce-
dure of data censoring would be possible only if animals
were kept individually in the test, or if they are perfectly
synchronized.

RELEVANCE FOR RISK ASSESSMENT
Previous studies have demonstrated that DEB‐TKTD

models can provide fully acceptable fits on combined
body size and reproduction data by ignoring the complex-
ities of clutch‐wise spawning and brood‐pouch incubation.
However, almost all published DEB‐TKTD analyses to date
have been conducted for constant exposure. The parameter
estimates will have been biased to some extent, but that
bias has a limited effect on the model fit. For pulsed ex-
posure, however, there is a more pressing need to get the
timing aspects right. This is most easily illustrated for the
brood‐pouch delay, as demonstrated in Figure 3. In this
case, we assume that the chemical has rapid damage dy-
namics: effects respond quickly to changes in exposure
concentration. Furthermore, the exposure pulse is assumed
to be stressful enough to completely stop investment in
reproduction, but only during the pulse. In this example, the
pulse hits the animal just after the first brood is released.
The investment in reproduction stops, but the eggs for the
second brood are already in the brood pouch; they were
produced before the pulse. Therefore, although the pulse
has immediately and completely stopped the investment in
reproduction, the second brood will exhibit no effects of
chemical stress. Only in the third brood does the effect show
up. However, unlike the complete stop of investment into
reproduction, the observed effect at the third brood will not
be complete, because there was some investment into re-
production just before and after the pulse. If we would fit a
DEB‐TKTD model to such an effect pattern (the filled blue
symbols in Figure 3), without considering the delay caused
by the brood pouch, we would incorrectly conclude that this
chemical has rather slow damage dynamics (delayed effects)
because toxic effects show up only several days after the
pulse exposure.
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FIGURE 3 Pulse exposure for a chemical with rapid damage dynamics that
completely stops reproduction during the exposure event. The bar indicates
the timing of the exposure pulse. Filled blue points: observed released
neonates; yellow points: estimates for the egg‐production events; solid line:
modeled investment into reproduction
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To what extent will this influence risk‐assessment appli-
cations of the model? The answer will depend greatly on the
species and toxicant, and also on the type of extrapolations
that are needed for a specific risk‐assessment application.
Previous work with a TKTD model for survival revealed that
the sensitivity of model parameters depends on the ex-
posure pattern used for extrapolation (Ashauer et al., 2013).
Similarly, we expect that bias in model parameters for DEB‐
TKTD models will affect some predictions more than others,
depending on the exposure pattern. As is true for all ex-
trapolations, uncertainty will increase the more the exposure
conditions in the calibration dataset(s) differ from the sce-
nario for model prediction. It is good to realize that EFSA's
Scientific Opinion (EFSA, 2018) provides a number of safe-
guards against biased model predictions. Indeed, the DEB‐
TKTD model needs to be calibrated on experimental data
for the specific species‐chemical combination, and sub-
sequently validated on a dataset with a different exposure
profile to prove that the model is able to extrapolate across
exposure conditions. There are quality requirements on the
datasets, and on the goodness‐of‐fit in the calibration and
validation stages. If the data are of sufficient quality, and if
the model provides a good correspondence to the datasets
in both the calibration and validation stages, we are con-
fident that it will also produce meaningful predictions for
untested exposure scenarios. In any case, we are certain that
it will provide a more biologically relevant risk assessment
than traditional descriptive procedures without DEB‐TKTD
models.
A matter of greater concern is that ignoring the com-

plexities for reproduction data will likely lead to rejection of
many model analyses for risk assessment. We will usually fit
multiple endpoints from the same toxicity test simulta-
neously: reproduction, body size, and survival. Under pulsed
exposure, ignoring the complexities of clutch‐wise spawning
and brood‐pouch delays can easily produce artificial incon-
sistencies between the effects on the various endpoints,
resulting in poor overall model fits in calibration, and poor
predictions in validation. It is important to evaluate TKTD
models critically, based on their performance in calibration
and validation on different datasets. However, it is also im-
portant to realize that rejection of TKTD models implies
falling back to descriptive methods (e.g., static dose‐
response curves and time‐weighted average exposure),
which are not held to the same high standards (Jager &
Ashauer, 2018). The problem here is that the TKTD model
could be rejected for the wrong reason: it would not be a
failure of the model itself, but rather an oversimplified link
between the modeled processes and the nature of the ob-
servations (the auxiliary hypotheses).
As explained, the issues regarding clutch‐wise spawning

and brood‐pouch delay may be addressed by censoring and
shifting the dataset, or by extending the model. Modifying the
dataset is often the simplest solution but may cause concern
in a field where observations are often viewed as objective
and “true.” Therefore, it is important to emphasize that such
data modifications are not intended to fix a poor model fit,

but rather to objectively make the data reflect the modeled
properties (they result from essential auxiliary hypotheses). If
an event is not observed, no information can be attained on
the mechanisms underlying the observations at the event.
Such data censoring would be specific for a species and a test
protocol, but would not depend on the chemical, possibly
with some exceptions (one is treated in the Dead neonates
and aborted eggs section: when a chemical is taken up by the
eggs in the brood pouch and affects development). Keeping
the data as is, and extending the DEB‐TKTD models, is also a
possibility. Including a brood‐pouch delay into the model is
simple, provided that the required shift is constant. Including
a reproduction buffer in the model is also feasible (for an
example, see Pecquerie et al., 2009), requiring rules for
spawning decisions. However, modeling a buffer implies
more complex model code, numerical issues caused by
switches in the model, and likely additional model param-
eters.

ADDITIONAL ISSUES
Beyond the clutch‐wise spawning and brood‐pouch delay

there are several additional complications with reproduction
data that are important to consider, but which will not be
discussed here in the same level of detail.

Nonconstant cost per egg

Simplified DEB‐TKTD models usually rely on the assump-
tion that, within a species, all eggs are equal. In other words:
the cost for a single egg, in terms of energy or mass, is
constant. Therefore, we can easily use observations of egg
numbers as a proxy for the investment into reproduction.
However, there are cases where this assumption is violated.
For D. magna, for example, the investment per neonate
depends on the mother's age or size, and on her feeding
status (Gabsi et al., 2014). This will cause some bias in the
DEB model parameters, but more important for risk assess-
ment is that toxicant stress may also affect offspring size. For
example, we may expect that chemicals affecting assimilation
would have the same effect as food limitation (increasing
offspring size). Furthermore, some toxicants have been
shown to specifically decrease offspring size, potentially
biasing interpretation of the toxicant's risks (Hammers‐Wirtz &
Ratte, 2000). It would not be too hard to modify the model to
account for changes in the cost per egg. However, parame-
terization of such an extension requires information about
egg or neonate size throughout the toxicity test. Such
measurements are not foreseen in standard test protocols
and may substantially increase testing efforts.

Dead neonates and aborted eggs

For animals that deposit their eggs into a brood pouch,
we may observe egg abortion or dead neonates, especially
under severe toxicant stress. The regulatory endpoint of the
Daphnia reproduction test is the number of live offspring at
the end of the test (OECD, 2012). Dynamic energy budget
models are concerned with the allocation of resources, and
ignoring the investment represented by aborted eggs and
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dead offspring has the potential to bias bioenergetic anal-
yses. Abortions and dead offspring can already occur in the
controls of a toxicity test, especially in the first brood.
Counting only the live offspring would bias the estimation of
the DEB model parameters, because the investment into
reproduction will be underestimated. However, the abor-
tions and deaths may also be an effect of the chemical, a
situation that requires more careful consideration. In prin-
ciple, there may be two mechanisms by which the toxicant
can affect developing eggs, leading to abortions or dead
neonates. The first route is through the mother: the mother
is affected by the chemical stress, which leads her to pro-
duce eggs that are compromised in a way that hampers
their development. The second route is through the egg:
the egg is exposed in the brood pouch, either through
maternal transfer of toxicants or by uptake from the medium
in the pouch, which affects its development.
If the effect is on the mother, and if there is only a direct

effect on reproduction, no special attention is required. If
only live offspring are counted, there is no relevant differ-
ence between reduced survival of embryos and reduced
resource investment into reproduction, and the same DEB‐
TKTD model formulation can be used for both cases. The
situation is different, however, when there is also an effect
on growth. Mechanisms of action which affect growth will, in
the DEB‐TKTD context, always have consequences for the
investment in reproduction. In such cases, we need to
separate the effects on reproduction into a reduction in in-
vestment (to which all offspring, alive or dead, contribute)
and a reduction in survival of the embryos. Failure to do so
can easily lead to a mismatch between the effects on growth
and reproduction.
If the effects are caused by exposure of the eggs in the

brood pouch, the situation is more complex. This case re-
quires us to consider the egg as a dynamic system with its
own TKTD model. Furthermore, the brood‐pouch delay
becomes irrelevant; in the exposure scenario of Figure 3, we
would expect to see an effect on the second brood already.
The timing of the observed effects, relative to the exposure
pulses, may thus reveal which route is most likely.

Deaths of the mothers

The standard test protocol for Daphnia reproduction
(OECD, 2012) states that, for accidental deaths (not con-
centration dependent), the replicate with the dead mother
should be excluded from the analysis. If the deaths are
concentration dependent, it is an effect of the compound,
and the replicate should be left in; there will be data points
with zero neonates for this replicate after the mother has
died. For DEB‐based modeling, neither option makes sense:
mothers that do not survive till the end of the test can still
provide information on the reproductive investment for the
period before their death, and we should not add in-
formation to the reproduction dataset that has no basis in
observation (dead mothers cannot provide information on
the reproduction process, so we should also not assume it is
zero). The same concerns were also raised for classical

dose‐response modeling (Delignette‐Muller et al., 2014). All
mothers contribute information on reproduction up to the
point where they die, and no further; the subsequent re-
production observations are “missing data points” and not
zeros. Because DEB‐TKTD models are fitted on observations
over time, premature deaths are not problematic for the
analysis, provided that we correctly weigh in the number of
contributing mothers in model calibration.

Removal of replicates will not bias a model analysis; it is
only inefficient as valuable information is discarded. In-
cluding zeros after the mother has died is more problematic
as it has the potential to completely disrupt the calibration
and validation procedures. One problem is that effects on
reproduction can no longer be interpreted as (only) an effect
on the energy budget and, hence, effects on reproduction
cannot be matched to effects on growth anymore. A second
problem occurs under pulsed exposure, because effects on
reproduction tend to be reversible, but effects on survival
are not. Keeping reproduction of dead mothers in the da-
taset will thus provide a biased view on the potential for
recovery. Clearly, the death of mothers is a relevant test
endpoint, but this needs to be modeled separately, using a
survival module within the DEB‐TKTD model, and not by
modifying the reproduction data.

Statistical issues

Fitting models requires a model for the process (here a
DEB‐TKTD model) and also a model for the residuals, de-
scribing the difference between model curve and ob-
servations. Selecting an appropriate statistical model for
reproduction data is far from trivial (Jager & Zimmer, 2012).
In many cases, the observations are made on the same co-
hort of animals, followed over time. Therefore, the ob-
servations are not independent, which is compromised
further by cumulating reproduction over time. Reproduction
observations are counts of eggs or neonates and hence
discrete. The residual variance usually increases with the
mean, but even worse: the residuals are not the result of
random measurement error but of biological variation
and the fact that the DEB‐TKTD model is a simplification
of reality.

Owing to this list of problems, there is currently no appro-
priate statistical model for reproduction data over time.
Several authors have proposed a negative binomial
distribution for cumulative reproduction counts (Delignette‐
Muller et al., 2014), also specifically for DEB‐TKTD modeling
(Billoir et al., 2011). Although this indeed addresses several of
the issues above (discrete data and residual variance in-
creasing with the mean), it does not solve the more important
issues (dependence and the nature of the error), while re-
quiring an additional parameter to be estimated from the
data. For now, we therefore propose to stick to the familiar
likelihood function based on the normal distribution for in-
dependent observations. To account for the increase in the
residual variance with the mean, we propose a mild trans-
formation such as square‐root transformation. This precludes
the fit to be dominated by the high values for the cumulative
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reproduction. Log‐transformation also does this but is more
problematic owing to the initial zeros, and because it strongly
emphasizes the appearance of the first brood. Because of the
limited temporal resolution in most tests, and the possibility
for the first brood to deviate (e.g., smaller individuals as in
D. magna), this could lead to unrealistic fits.
Clearly, this statistical model is a poor representation of

the error structure in the data; more work is needed to de-
velop better matching alternatives (without complicating the
model). We do not expect that these limitations will lead to
bias in the model fits or in the model predictions. However,
the confidence intervals on the model parameters and the
model predictions will be compromised, which should
therefore be interpreted with care.

RECOMMENDATIONS
The link between model and observations requires closer

scrutiny for DEB‐TKTD models, especially for the endpoint
reproduction. Most test designs currently follow the pre-
scriptions in standard test protocols, which were never in-
tended for mechanistic model analysis. The EFSA opinion

on TKTD models (EFSA, 2018) provides no guidance on this
mismatch, which would also have been complicated be-
cause one single strategy is unlikely to fit all species, all
stressors, and all test designs. In Table 1, we provide some
preliminary recommendations on the various issues we put
forward. Proper guidance would need to be tailored to the
peculiarities of the test species, and the possibilities for
experimental testing. For example, for some species it is not
practically feasible to follow individuals over time. Fur-
thermore, some recommendations involve modifications of
the test design; developing proper guidance would be most
efficient in conjunction with a revision of the standard test
protocols.
Ignoring the issues listed in Table 1 will always cause

bias in the model parameters. It is unclear to what extent
this will also lead to bias in model predictions; this will
likely be highly case specific. Such bias tends to go un-
noticed in the control fits, and often also in fits for effects
under constant exposure. However, we can be certain
that there will be cases that are severe enough for the
DEB‐TKTD model to fail in explaining the observations for

Integr Environ Assess Manag 2022:479–487 © 2021 SETACDOI: 10.1002/ieam.4476

TABLE 1 Practical recommendations for the various issues with reproduction data

Issue Recommendation Note Consequences of ignoring the issue

Clutch‐wise
spawning

Censor dataset if animals are
followed individually or are
closely synchronized

As an alternative, we can include the
reproduction buffer in the model;
this requires rules for the timing of
the spawning events

Medium potential for failure or bias

Brood‐pouch
delay

Shift dataset or model output
in time

Shifting the model output is only
possible if the required shift is
constant over time and across
treatments; do not shift data or
model when the chemical is taken
up by the egg and affects
development in the brood pouch

High potential for failure and bias
under pulsed exposure

Nonconstant egg
costs

Follow egg or offspring size in
the test

Counts on reproductive output
would need to be scaled to a
reference offspring size, or
investment per offspring in the
model must be variable

High potential for failure and bias
only if egg costs are
concentration dependent

Aborted eggs
and/or dead
neonates

Count and classify all
reproductive output

Which counts to use, and how to use
them, can be decided on a case‐
by‐case basis; effects on total
reproductive output are best
separated from effects on egg
development and survival

High potential for failure and bias
only if abortions and/or deaths
are concentration dependent;
low potential when effect is
through the mother and on
reproduction only

Death of mothers Include reproduction by all
individuals, for as long as they
are alive

Reproduction in an interval needs to
be weighed according to the
(average) number of females alive
in that interval; deaths need to be
covered by a survival module in
the DEB‐TKTD model

High potential for failure and bias
only if reproduction for dead
mothers is set at zero

Statistical issues Use likelihood based on the
normal distribution with a mild
transformation

Low, but confidence intervals need
to be treated more qualitatively

Note: The last column summarizes the potential for failure of the model calibration and validation, and our subjective evaluation for the potential bias in model
parameters.
Abbreviations: DEB, dynamic energy budget; TKTD, toxicokinetic–toxicodynamic.
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pulsed exposure. In the supporting information, we offer a
case study, illustrating the potential bias caused by ig-
noring clutch‐wise spawning and brood‐pouch delays. This
is just one example, but it demonstrates that the brood‐
pouch delay in particular can provide a distorted picture of
the effects caused by pulsed exposure. More example
studies would allow a clearer picture of the extent of this
bias and the cases that cause the greatest concern. How-
ever, uncertainty about the extent of the impact should
not be used as an excuse to perpetuate an inherently
flawed set of auxiliary hypotheses.
At this moment, TKTD modelers will need to decide how

to use reproduction data on a case‐by‐case basis. We
strongly advise them, however, to explicitly mention and
motivate that choice in their reporting, for each of the issues
in Table 1, including when no modifications are used.
As TKTD models are receiving increasing attention in the
risk‐assessment community, more and better data are
bound to become available. In due time, this will allow more
structured guidance to be developed. It is, however, of
paramount importance to ensure that all datasets used in an
analysis are treated in the same manner. Using a censored
dataset for calibration and an uncensored one for validation
is bound to cause problems. This warning also extends to
the use of DEB parameters from the add‐my‐pet library,
which is needed to apply the most extensive DEB‐TKTD
model variants (Sherborne et al., 2020).

CONCLUSIONS
Toxicokinetic‐toxicodynamic models offer a powerful

means to interpret and predict toxicity, accounting for the
development of the individual organism over time as well as
the time‐dependency of exposure. This is a huge benefit for
pesticide risk assessment, because it is impossible to ex-
perimentally test all potentially relevant exposure situations.
However, this power comes at a price. Although endpoints
such as survival and body size allow for a relatively
straightforward link to modeled state variables, this link re-
quires closer scrutiny for the endpoint reproduction. This is
especially true when a species releases eggs in clutches, and
even more so when eggs develop inside the mother's brood
pouch. The primary purpose of this paper is to raise
awareness of these complications among modelers and
users of model results, and point out the potential for bias in
model analyses. In a broader sense, this paper embodies an
invitation to carefully consider the need for auxiliary hy-
potheses in mechanistic modeling in general, as integral
part of the empirical cycle (Kooijman, 2018).
The EFSA's Scientific Opinion provides ample insurance

against biased model predictions because it emphasizes
model validation with independent experiments. However,
we expect that ignoring the above‐mentioned complica-
tions for reproduction data will lead to failure of DEB‐TKTD
analyses in many cases, in the validation stage or even
already during calibration. This is unnecessary because the
reasons for this failure would be an avoidable mismatch
between the data collected from standard test protocols

and the information needs for DEB‐TKTD models. It is
furthermore unhelpful, because rejection of TKTD models
implies falling back on traditional descriptive methods,
which do not solve these issues but rather add a series of
more fundamental problems (Jager, 2011). We hope that
the recommendations provided in Table 1 allow for more
successful application of DEB‐TKTD models.
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