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Example code and software 
All example code and software can be downloaded free of charge as supporting information to this 

publication. 

Mathematica  
Model calibration, predictions and estimation of uncertainty bands to forecast survival of G. pulex 

across different exposure patterns were performed in Mathematica 10.0 (Wolfram Research). This is  

an example implementation of GUTS-SIC-IT and GUTS-SIC-SD, where the IT version assumes a log-

logistic distribution of the threshold. The Mathematica code is provided as separate supporting 

information. 

Matlab 
Additional calculations on the synthetic data (see sections below) were made with the BYOM 

package for Matlab and the GUTS2 package (which can be used for all GUTS flavours). Both can be 

downloaded free of charge from http://www.debtox.info/byom.html. The BYOM package applies a 

Simplex optimisation routine (which can be easily changed to other Matlab-based optimisation 

functions) for the likelihood function (following from the multinomial distribution1). To produce 

confidence intervals, the BYOM package includes likelihood profiling2 and MCMC sampling (yielding 

a Bayesian posterior that is used to derive marginal distributions for individual parameters, as well as 

the joint distribution for forward prediction). Example fits are shown in the sections below. 

GUTS R package 
Inference with GUTS proper on the synthetic data was performed with the R-package “GUTS” 3,4. A 

log-normal distribution of thresholds was used i. The priors were chosen to be flat. The posterior 

samples were generated by means of adaptive Monte Carlo chains (R package “adaptMCMC”).  To 

get a start value for the chains, the optimizer “hjkb” from the R-package “dfoptim” was employed. 

Since the posterior marginals of some of the parameters seem to have non-vanishing support at 

infinity, all parameters were transformed with exp(-ϑ) before running the chains.  Chains of length 1 

M (resp 2 M) were used and the adaptation phase (10 % of the chain) was discarded. The maximum 

of the posterior (best fit) as well as 2.5% and 97.5 % quantiles of the posterior marginals are plotted 

in Figure 3. 

The R-package can be downloaded free of charge from http://cran.r-

project.org/web/packages/GUTS/index.html. To demonstrate the fits on the synthetic data sets, two 

examples are shown in Figure S9. 

GUTS implementation with graphical user interface 
An example implementation of GUTS-SIC-IT and GUTS-SIC-SD in Delphi 

(http://www.embarcadero.com/products/delphi) is also provided. For the IT version a log-logistic, 

log-normal or Weibull distribution of the threshold can be selected, although the log-logistic 

distribution is recommended.  The optimal parameter set is found by optimizing the likelihood 

function for GUTS (see Eq. 8) and parameter confidence intervals are calculated using likelihood 

                                                           
i
 We do not see any strong reasons to prefer one threshold distribution over the other (e.g. log-normal vs log-
logistic), however the log-logistic distribution is easier to implement computationally in some software 
environments. In this study we used the log-logistic distribution in the Mathematica and ModelMaker 
implementations and log-normal in R and Matlab.   

http://www.debtox.info/byom.html
http://cran.r-project.org/web/packages/GUTS/index.html
http://cran.r-project.org/web/packages/GUTS/index.html
http://www.embarcadero.com/products/delphi
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profiling. The best optimization results are usually obtained with Simulated Annealing, but the 

fastest optimization is typically achieved using Downhill Simplex. The code for both these algorithms 

originates from the TPmath library (Version 0.81, 2011 http://sourceforge.net/projects/tpmath/). 

The implementation comes with a graphical user interface, needs no installation and has been used 

previously5-8. 

Implementation in ModelMaker 
An example implementation of GUTS-SIC-IT and GUTS-SIC-SD in ModelMaker is also provided and 

can be downloaded free of charge from http://www.ecotoxmodels.org/guts/. The IT version 

assumes a log-logistic distribution of the threshold. ModelMaker (http://www.modelkinetix.com/) is 

a user friendly software that is well suited to model prototyping, differential equations and model 

calibration. The ModelMaker implementation includes the likelihood function for GUTS (Eq. 8) and 

uses the Downhill Simplex algorithm for parameter estimation. GUTS-SIC-IT, GUTS-SIC-SD, GUTS-SID-

IT and GUTS-SID-SD versions have been used previously9-11. 

GUTS-SIC-SD and GUTS-SIC-IT 
All the models we used were previously published1,10. We recall them here for clarity. 

Time course of dose metric 

We use the scaled internal concentration  as a dose metric, which is the true internal 

concentration divided by the bioconcentration factor1. This TK model can be used in absence of 

information on body residues; it should be noted that  has the dimension of an external 

concentration. The time course of the scaled internal concentration is determined by the dominant 

rate constant  (time -1) and given by the differential equation: 

        Eq. 1 

The driving variable or model input is the external concentration in water . The scaled internal 

concentration  is linked to the stochastic death (SD) or individual tolerance (IT) model to 

describe the survival over time1,10. 

Link to survival in GUTS-SIC-SD 
In the SD model, the hazard rate, or the instantaneous probability to die, is calculated from the 

scaled internal concentration:  

        Eq. 2 

which describes hazard increasing in proportion to how much the dose metric exceeds the threshold 

 (concentration). The killing rate constant  (concentration-1.time-1) is the proportionality 

constant and  (time-1) the background hazard rate. 

http://sourceforge.net/projects/tpmath/
http://www.ecotoxmodels.org/guts/
http://www.modelkinetix.com/
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For the parameterisation of the SD model, the killing rate constant and the internal threshold have 

to be estimated from the survival data. As the dose metric is the scaled internal concentration,  

and  will have the dimension of external concentrations. 

The survival probability  is the probability of individual to survive until time . It is calculated 

as follows: 

 with        Eq. 3 

The background hazard rate should be fitted on the entire dataset, although sometimes it can be 

defensible to fit it only on the control survival data. 

Link to survival in GUTS-SIC-IT 
In the IT model we assume that the threshold follows a probability distribution, such as the log-

logistic (or log-normal or other suitable distribution)ii, and that death is immediate when the scaled 

internal concentration exceeds the individual’s threshold. We can calculate the survival probability 

for an individual following a cumulative log-logistic distribution of the threshold  by10:  

𝐹(𝑡) =
1

1+(max0≤𝜏≤𝑡 𝐶𝑖
∗(𝜏)/𝛼)

−β        Eq. 4 

where a  is the median of the distribution of  (concentration), and b  (-) is the shape parameter of 

the distribution and F(t) is the cumulative log-logistic distribution of the threshold . 

Instead of the shape parameter, an easy-to-interpret alternative can be used in the form of a ‘factor 

of spread’ . This is the factor that needs to be used on the median value of  to cover 95% of the 

probability distribution (i.e., from the 0.025-0.975 percentile). This parameter can be used for all 

distributions that are symmetrical on log-scale (also for the log-normal distribution). For the log-

logistic distribution, b  equals , and for the log-normal distribution, the standard 

deviation on  scale equals . 

 

In the IT model, the survival is related to the maximum dose metric that individuals experienced 

until time t rather than to the actual value of the dose metric at time t, because organisms that died 

previously remain dead (this is particularly important when dealing with time-varying exposure). The 

probability to survive until time t is then:  

         Eq. 5 

                                                           
ii
 For the synthetic data to optimize experimental design for calibration of the GUTS proper, a log-normal 

distribution was used. 
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Parameter optimisation used for forecasting survival across different 

exposure patterns 
Survival probabilities for both the SD and the IT model are calculated in explicit dependence of the 

parameter vector 𝜃 and the external concentration over time, so formally  

      Eq. 6 

and 

      Eq. 7 

Survival data follow a multinomial distribution, hence the following log-likelihood function applies1: 

ln 𝑙(𝜃|y) =  ∑ (𝑦𝑗−1 − 𝑦𝑗)ln (𝑆𝑗−1(𝜃) − 𝑆𝑗(𝜃))𝑛+1
𝑗=1      Eq. 8 

Where  are experimental observations at sampling times  and  are simulated survival 

probabilities at sampling time  given parameter vector q . The maximum of the log-likelihood 

function indicates an optimal fit between observed and simulated survival. In practice, the negative 

of the log-likelihood function is often used because parameter estimation algorithms usually 

minimise the objective function. Here we used: 

Objective function =  ln 𝑙(𝜃|𝑦).        Eq. 9 

The smaller the objective function, the better is the fit. 

To find the optimal vector of parameter values  for each of the SD and the IT models, we 

optimised the parameter values with respect to the experimentally observed survival data. We used 

the built-in optimisation routine Simulated Annealing of the method NMinimize of Mathematica 

(Wolfram Research, version 10.0) to obtain the best fit between data and model simulations by 

minimizing − ln 𝑙(𝜃|𝑦), i.e. maximizing the log-likelihood  function itself. 

The optimisation routine yielded an optimal parameter vector  for which the log-likelihood 

function shows the highest values ln 𝑙(𝜃|𝑦). Optimisation was repeated twice after the first 

optimisation run, each time using the optimum values from the previous optimisation step as 

starting values, finally resulting in an optimal parameter set  for each species and model version. 

All parameter vectors q  being tested during the optimisation routine have been stored together 

with the resulting likelihood values ln 𝑙(𝜃|𝑦) for further analyses. 

Calculation of model performance statistics 
For the quantification of the accuracy of the model predictions, we used the chi-square as measure 

of model performance  

         Eq. 10 



 Page 7 of 35 

where  indicate observed numbers of surviving individuals and  the predicted number of 

surviving individuals (not to be confused with the survival rates) at sampling times  and  the 

number of observation points. Addition of 1 in the denominator is corresponding to division of 

surviving individuals into classes: class  for numbers of surviving individuals from  to . Since 

the test statistic only asymptotically follows a  distribution, and the expected counts in some bins 

will be low, the result should be considered an approximate measure for goodness-of-fit. 

Numerical estimation of parameter confidence intervals 
The likelihood ratio method was used to estimate confidence intervals for the optimal parameters2,12 

. Confidence intervals for the single parameters for a given confidence level a  were calculated 

as the profile likelihood. The confidence set includes those parameter values for which the likelihood 

ratio fulfils the condition: 

2 [ln 𝑙(𝜃|𝑦) − ln 𝑙(𝜃(𝑝)|𝑦)] ≤ 𝜒𝑑𝑓,1−𝛼
2       Eq. 11 

with  being the value of the Chi-square distribution for the confidence level a , and the 

degrees of freedom of the likelihood ratio. For single parameter confidence intervals, the likelihood 

ratio has . To find these parameter values, one value in the parameter vector, say the pth 

parameter  was set to successively decreasing values (the vector θ(p) then denotes all parameters 

except p), starting at the maximum-likelihood estimate, i.e. the best parameter value. All parameter 

values with exception of parameter   were again optimised (using the NMinimize method and the 

SimulatedAnnealing algorithm in Mathematica) to give a best fit to the experimental data. This 

procedure was repeated until the value of ln 𝑙(𝜃|𝑦) satisfied eq. 11. Likewise, this procedure was 

repeated for successively increasing parameter values, again starting with the optimal maximum-

likelihood estimate. The first parameter values that did not fulfil condition (eq. 11) were taken as 

lower and upper confidence interval limits to the confidence level a . This procedure was performed 

for all parameters and . All parameter vectors  being tested during the confidence 

interval estimation routine have been stored together with the resulting likelihood values for further 

analyses. 

Stochasticity of survival 
Survival is a binary process, i.e. an individual can either be alive or death. The number of individuals 

in a group of individuals influences the uncertainty of model predictions about the survival of the 

group of individuals, especially for small numbers ( ). To consider the specific nature of 

survival, survival is modelled as a binomial process. Multinomial distributions have previously been 

used to model survival1 and they are equivalent to the conditional binomial distribution, but only 

when there are no animals lost to follow-up13. Here we model survival as a binomial process, with 

the number of surviving individuals being proportional to the conditional binomial distribution: 

         Eq. 12 
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where  is the number of survivors in a population at time and  the number of 

individuals being alive at time .  is the conditional probability to survive from time  until time 

 given by: 

         Eq. 13 

where  is the survival probability calculated by the SD or the IT model for parameter vector 

q , external concentration time course , and the time .  is the probability to survive 

until time , which is different to the conditional probability of Eq. 13. Note that the time step is not 

fixed to 1 here, as the survival probabilities can be evaluated for arbitrary small or large time steps, 

hence conditional probabilities can be modelled as a random process using a flexible time step . 

For a parameter vector q , a chosen external concentration regime  and an initial population size 

, the number of surviving individuals in the population is modelled in an iterative way, starting 

with  individuals at , by drawing for every new time step  from a binomial distribution 

parameterised by the number of living organisms at time , and the calculated survival rates for 

times  and  as given in Eq. 12 and 13. By performing  repetitions of this procedure, we 

obtain  realisations of the survival probabilities within a population of initial size , given 

parameter vector q  and external exposure , from which statistical descriptors such as median 

and percentiles are calculated. 

Including parametric uncertainty in forecasts 
Parametric uncertainty in model simulations is in addition to the stochasticity of survival itself. To 

consider parametric uncertainties, the following approach is used. 

For all monitored parameter vectors  that have been generated and tested within the parameter 

optimisation and confidence interval estimation routines, the corresponding likelihood values  

ln 𝑙(𝜃(𝑝)|𝑦) have been stored. To approximate the joint confidence regions for the parameters, we 

selected those parameter sets from the optimisation procedure (simulated annealing) that were not 

rejected in a likelihood ratio test (critical value 7.81 from Chi-square distribution, , ): 

2 [ln 𝑙(𝜃|𝑦) − ln 𝑙(𝜃(𝑝)|𝑦)] ≤ 𝜒𝑑𝑓,1−𝛼
2        Eq. 14 

with  being the value of the Chi-square distribution for the confidence level a , and the 

degrees of freedom of the likelihood ratio. The degrees of freedom for the likelihood ratio that is 

being used for the construction of the joint confidence region are defined by the difference in free 

model parameters, that is in this case , because for optimisation all three model parameters 

of the GUTS-SIC-SD or GUTS-SIC-IT models were free, whereas for the construction of the three-

dimensional joint confidence region all model parameters were fixed. The background mortality rate 

constant was not taken into account here, because it was not considered for the uncertainty 

calculations as purpose of the forecasts is to inform about the effect of chemical stress on survival. 
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Probabilistic modelling of survival over time 
Information about parameter uncertainty and about stochasticity of survival were combined to 

characterise uncertainties of model simulations. For a given exposure , a number of  

parameters from the confidence region  were drawn, and for every parameter vector  the 

survival over time was simulated as an explicit conditional binomial process in  iterations. The 

total numbers of simulations hence amounts to . These  realisations of the 

simulated numbers of surviving individuals within the population of initial size  can be described 

statistically, e.g. by the median and minimum and maximum of the distribution of the numbers of 

survivors, quantifying uncertainty in the model predictions. For this study, we used , 

 for malathion and carbendazim, and  for cypermethrin and dimethoate; 

hence we performed  and  simulations of survival over time, respectively.  
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Experiments with G. pulex 
The toxicity tests with G. pulex and carbendazim, dimethoate and cypermethrin followed previously 

established methods and protocols10,11,14,15. Adult test organisms were collected in the field (Itziker 

Ried, Greifensee catchment, near Zurich, Switzerland), acclimatised to laboratory conditions (e.g. 

13°C) and fed with pre-conditioned horse-chestnut leaves. Toxicity experiments were conducted in 

600 mL pyrex beakers filled with 500 mL of pre-aerated artificial pond water. At the start of the 

experiments each beaker contained 10 individual G. pulex, which were fed with pre-conditioned 

horse-chestnut leaf discs ad libitum. Survival was observed daily. Conductivity, pH and dissolved 

oxygen content were monitored. 

We used 14-C labelled test chemicals to enable measurement of exposure concentrations via liquid 

scintillation counting. The short experiments (4 day duration) consisted of seven treatments and 

controls, where each treatment consisted of two replicate beakers (i.e. 20 individuals initially per 

treatment). The treatments in the longer experiments consisted of pulsed exposure with short 

interval (two pulses, 8 replicate beakers), pulsed exposure with longer interval (two pulses, 8 

replicate beakers), constant exposure (8 replicate beakers), solvent controls (mimicking long interval 

pulsed exposure pattern, 4 beakers) and controls (mimicking long interval pulsed exposure pattern, 

4 beakers). At the end of pulses and at regular water renewables, organisms were rinsed and then 

placed into new beakers with fresh artificial pond water. 

Calibration data of G. pulex survival 
The acute toxicity data for Malathion were previously published elsewhere15. We repeat them here 

for completion. 

Table S1: Number of alive G. pulex in each treatment during short toxicity test with malathion. 

Days 3.837 
nmol/L 

2.805 
nmol/L 

1.867 
nmol/L 

1.148 
nmol/L 

0.739 
nmol/L 

0.543 
nmol/L 

0.345 
nmol/L 

controls 

0 20 20 20 20 20 20 20 20 

1 20 20 20 20 20 20 20 20 

2 9 12 19 19 20 20 20 19 

3 1 5 10 12 19 20 20 19 

4 0 2 3 6 17 20 20 19 

 

Table S2: Number of alive G. pulex in each treatment during short toxicity test with carbendazim. 

Days 1279.8 
nmol/L 

447.9 
nmol/L 

156.8 
nmol/L 

54.9 
nmol/L 

19.2 
nmol/L 

6.7 
nmol/L 

2.4 
nmol/L 

controls 

0 20 20 20 20 20 20 20 20 

1 17 18 16 16 19 16 19 19 

2 10 11 15 15 16 14 18 17 

3 4 8 11 14 12 13 17 17 

4 0 5 8 14 11 13 16 16 
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Table S3: Number of alive G. pulex in each treatment during short toxicity test with cypermethrin. 

Days 1.9224 
nmol/L 

0.7113 
nmol/L 

0.2632 
nmol/L 

0.0974 
nmol/L 

0.036 
nmol/L 

0.0133 
nmol/L 

0.0049 
nmol/L 

controls 

0 20 20 20 20 20 20 20 19 

1 0 1 6 20 20 20 20 18 

2 0 0 0 9 19 19 19 18 

3 0 0 0 6 19 19 19 18 

4 0 0 0 2 15 19 18 17 

 

Table S4: Number of alive G. pulex in each treatment during short toxicity test with dimethoate. 

Days 218529 
nmol/L 

87412 
nmol/L 

34965 
nmol/L 

13986 
nmol/L 

5594 
nmol/L 

2238 
nmol/L 

895 
nmol/L 

controls 

0 20 20 20 20 20 20 20 20 

1 11 18 18 20 20 19 19 19 

2 1 3 7 18 20 18 18 19 

3 0 1 3 15 17 18 18 19 

4 0 0 1 9 16 16 16 19 

 

 

G. pulex survival data under pulsed exposure 
The pulsed toxicity data for malathion were previously published elsewhere11. We show the data 

from treatments A and B here, but note that the original data also contain an additional treatment C 

which was not used in this study. 

Table S5: Concentration of malathion in the treatments during the pulsed exposure experiment. The original data
11

 also 
contain an additional treatment C which was not used here. 

 

Treatment A 
(pulsed, short 
interval) 

Treatment A 
(pulsed, short 
interval) 

Treatment B 
(pulsed, long 
interval) 

Treatment B 
(pulsed, long 
interval) 

Time (days) Concentration 
(nmol/L) 

Time (days) Concentration 
(nmol/L) 

0.0000 4.0262 0.0000 4.0243 

0.0071 4.0262 0.0071 4.0243 

0.9929 3.7924 0.9929 3.7898 

1.0029 0.0000 1.0029 0.0000 

6.1458 0.1280 7.1701 0.1597 

6.1632 3.9464 9.0035 0.0000 

7.1701 3.8247 9.0104 4.0264 

7.1801 0.0000 10.0035 3.8358 

10.0035 0.1045 10.0135 0.0000 

15.0174 0.0000 15.0174 0.1044 

17.0104 0.0000 17.0104 0.0000 

27.0174 0.0000 27.0174 0.0000 

27.1000 0.0000 27.1000 0.0000 
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Table S6: Number of alive G. pulex in each treatment during long toxicity test with malathion. The original data
11

 also 
contain an additional treatment C which was not used here. 

Days Treatment A 
(pulsed, short 
interval) 

Treatment B 
(pulsed, long 
interval) 

0 70 70 

1 67 69 

2 63 66 

3 62 66 

4 61 65 

5 60 65 

6 60 64 

7 54 62 

8 45 61 

9 43 61 

10 40 48 

11 37 43 

12 36 39 

13 33 37 

14 32 33 

15 30 32 

16 29 31 

17 25 27 

18 23 26 

19 23 25 

20 21 25 

21 20 24 

22 20 24 

 

 

Table S7: Concentration of carbendazim in the treatments during the pulsed exposure experiment. Note that treatment 
C was not used in the figures due to space limitations. 

Treatment A 
(pulsed, short 
interval) 

Treatment A 
(pulsed, short 
interval) 

Treatment B 
(pulsed, long 
interval) 

Treatment B 
(pulsed, long 
interval) 

Treatment C 
(constant 
exposure) 

Treatment C 
(constant 
exposure) 

Time (days) Concentration 
(nmol/L) 

Time (days) Concentration 
(nmol/L) 

Time (days) Concentration 
(nmol/L) 

0 0 0 0 0 0 

0.003 6914.14 0.005 7071.00 0.005 1189.96 

1.000 6802.85 1.000 6919.75 3.014 1198.96 

1.01 0 1.01 0 3.028 1166.26 

2.000 0.00 3.031 0.00 7.035 1144.84 

2.010 6933.66 6.042 0.00 7.038 1124.64 

3.000 6798.91 6.049 6920.60 10.100 1124.64 

3.010 0.00 7.042 6861.19   

6.035 0.00 7.052 0.00   

10.014 0.00 10.031 0.00   

10.100 0.00 10.100 0.00   
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Table S8: Number of alive G. pulex in each treatment during long toxicity test with carbendazim. Note that treatment C 
was not used in the figures due to space limitations. 

Days Treatment A 
(pulsed, short 
interval) 

Treatment B 
(pulsed, long 
interval) 

Treatment C 
(constant 
exposure) 

Controls 

0 80 80 80 80 

1 78 79 78 77 

2 59 40 71 74 

3 31 28 40 74 

6 7 24 5 67 

7 7 21 2 65 

8 6 11 0 65 

 

Table S9: Concentration of cypermethrin in the treatments during the pulsed exposure experiment. Note that treatment 
C was not used in the figures due to space limitations. 

Treatment A 

(pulsed, short 
interval) 

Treatment A 

(pulsed, short 
interval) 

Treatment B 

(pulsed, long 
interval) 

Treatment B 

(pulsed, long 
interval) 

Treatment C 

(constant 
exposure) 

Treatment C 

(constant 
exposure) 

Time (days) Concentration 
(nmol/L) 

Time (days) Concentration 
(nmol/L) 

Time (days) Concentration 
(nmol/L) 

0 0 0 0 0 0 

0.010 0.100 0.010 0.107 0.010 0.017 

1.017 0.050 1.031 0.044 3.031 0.009 

1.027 0.000 1.041 0.000 3.045 0.010 

2.042 0.004 3.017 0.002 7.063 0.000 

2.049 0.116 6.135 0.000 7.069 0.011 

3.049 0.063 6.142 0.114 10.115 0.008 

3.059 0.000 7.149 0.070   

6.115 0.000 7.159 0.000   

10.115 0.000 10.115 0.000   

  

Table S10: Number of alive G. pulex in each treatment during long toxicity test with cypermethrin. Note that treatment 
C was not used in the figures due to space limitations. 

Days Treatment A 
(pulsed, short 

interval) 

Treatment B 
(pulsed, long 

interval) 

Treatment C 
(constant 

exposure) 

Controls 

0 80 80 80 80 

1 76 65 78 79 

2 74 62 76 79 

3 19 61 75 77 

6 14 49 72 73 

7 14 40 71 73 

8 13 37 68 72 

9 13 34 65 72 

10 13 33 64 71 
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Table S11: Concentration of dimethoate in the treatments during the pulsed exposure experiment. Note that treatment 
C was not used in the figures due to space limitations. 

Treatment A 
(pulsed, short 
interval) 

Treatment A 
(pulsed, short 
interval) 

Treatment B 
(pulsed, long 
interval) 

Treatment B 
(pulsed, long 
interval) 

Treatment C 
(constant 
exposure) 

Treatment C 
(constant 
exposure) 

Time (days) Concentration 
(nmol/L) 

Time (days) Concentration 
(nmol/L) 

Time (days) Concentration 
(nmol/L) 

0 0 0 0 0 0 

0.010 44931 0.010 44704 0.010 9141 

1.017 43830 1.028 44007 3.038 9180 

1.027 0 1.038 0 3.042 9387 

1.997 121 3.028 0 7.014 9340 

2.000 41998 5.997 0 7.017 8191 

3.000 44433 6.003 41332 10.028 9255 

3.010 0 7.000 44835   

6.035 0 7.010 0   

10.028 0 10.028 0   

  

Table S12: Number of alive G. pulex in each treatment during long toxicity test with dimethoate. Note that treatment C 
was not used in the figures due to space limitations. 

Days Treatment A 
(pulsed, short 
interval) 

Treatment B 
(pulsed, long 
interval) 

Treatment C 
(constant 
exposure) 

Controls 

0 80 80 80 80 

1 71 56 78 79 

2 51 38 61 78 

3 42 31 34 76 

6 30 20 24 71 

7 27 15 19 67 

8 21 9 18 67 

9 16 6 14 67 

10 10 3 12 67 

 

 

  



 Page 15 of 35 

Construction of simulated concentration-response relationships 

Concentration-response curves for constant exposures 

Simulated concentration-response relationships for constant exposure (Figures 1, S1-S3, panels B,H) 

were constructed by predicting survival over time for a series of exposure levels (see table S13 for 

details). Predictions were done both in a deterministic (using the optimal parameter vector) and a 

probabilistic manner (with 10000 Monte Carlo runs for CYP, CBZ and MAL, and 5000 MC runs for 

DIM, respectively).  Simulated survival at day 4 as appearing from the optimal solutions, and median, 

minimum and maximum as appearing from the probabilistic simulations together with the exposure 

concentration generated a series of data points which were interpolated to obtain the 

concentration-response curves. 

Concentration-response curves for pulsed exposures 

Simulated concentration-response relationships for pulsed exposure scenarios A and B (Figure 3, 

Figures S1-S4 panels D, F, J, L) were constructed by predicting survival over time for a series of 

manipulated pulsed exposure profiles. The concentrations as used in the original pulsed exposure 

experiments A and B were multiplied by a series of multiplication factors (see table S13 for details). 

Predictions were done both in a deterministic (using the optimal parameter vector) and a 

probabilistic manner (with 10000 Monte Carlo runs for cypermethrin, carbendazim and malathion, 

and 5000 MC runs for dimethoate, respectively).  Simulated survival at the end of the pulsed 

experiments as appearing from the optimal parameter sets, and median, minimum and maximum as 

appearing from the probabilistic simulations together with the exposure concentrations generated a 

series of data points that were interpolated to create the concentration-response curves at the last 

day of the experiment. 

Table S13: Concentrations used for creating simulated concentration-response relationships. 

  Acute Pulse A & B 

Compound # concentration levels Range (nmol L-1) Factors (-)a 

Cypermethrin 29 0.00499 – 5.474 0.0388 – 42.52 

Malathion 16 0.223 – 7.390 0.055 – 1.84 

Dimethoate 32 0.449 – 812.41 0.010 – 18.08 

Carbendazim 42 2.45 – 54176 0.00035 – 7.818 

a: factors being multiplied with the original concentration time series as measured in pulse A 

and B experiments.  
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Best fit parameters 
 

Table S14: Estimated optimal parameter values, negative log-likelihood values and confidence limits for GUTS-SIC-IT and 
GUTS-SIC-SD for G. pulex 

 

        

SD model 
 

hB ke kk Z -ln L 
Parameter 
sets(b) 

 Lcl(a)  0.20284 13.212 1.348E-2   
Cypermethrin opt(a) 0.0278 0.41708 29.826 2.395E-2 85.4141 1028/8047 

 ucl(a)  0.62393 91.450 3.421E-2   

 lcl  4.621E-3 1.4398 1.721E-2   
Malathion opt 0.0129 2.153E-2 10.111 4.115E-2 117.587 2201/13828 

 ucl  3.245E-2 312.39 1.154E-1   

 lcl  1.262E-3 3.51E-02 1.798E-2   
Dimethoate opt 0.0267 1.934E-2 4.60E-01 1.958E-1 145.669 1785/10959 

 ucl  9.909E-2 9.35E-01 6.935E-1   

 lcl  1.069E-4 - -   

Carbendazim opt  5.819E-4 0.5641 0 195.276 3373/14247 

 ucl   -  29.027 -   

        

IT model 
 

hB ke alpha beta -ln L 
Parameter 
sets 

 lcl  8.960E-5 3.106E-5 2.6310   
Cypermethrin opt 0.0278 4.008E-4 8.611E-5 3.7959 85.9546 1119/7408 

 ucl  3.201E-2 2.012E-4 5.1715   

 lcl  5.249E-5 6.523E-4 3.2716   
Malathion opt 0.0129 1.255E-4 7.228E-4 4.2281 126.9 1979/14277 

 ucl  8.135E-4 7.969E-4 5.1392   

 lcl  3.724E-5 3.186E-3 1.6983   
Dimethoate opt 0.0437 6.275E-5 6.870E-3 2.2566 165.605 780/5418 

 ucl  2.193E-4 2.124E-2 2.9299   

 lcl   - 9.983E-3 1.1849   
Carbendazim opt 0.0564 1.006E-5 1.722E-2 1.9185 204.674 2053/12231 

 ucl   - 6.989E-2 2.9934   
(a)lcl: lower confidence limit (critical value from Chi-square distribution 3.84, , ); ucl: 

upper confidence limit ( ); opt: optimal parameter value. 

(b)Parameter sets: number of parameter sets within the joint confidence region (critical value from 
Chi-square distribution 7.81, , )/number of tested parameter sets. 
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Performance statistics for model predictions 

 

Table S15: Chi
2
 values of the predictions of survival under pulsed exposure regimes as measures of model performance. 

  

Optimal 
parameters 

Medians of 
probabilistic 
predictions 

  

  
A B A B average Chi2 limit 

Cypermethrin 
SD 118.52 59.72 118.497 51.469 87.051 12.5916 

IT 165.241 30.662 162.81 30.186 97.224   

Malathio 
SD 14325 15501 14992 16020 15209 31.4104 

IT 813.30 831.31 831.19 837.20 828.25   

Dimethoate 
SD 736.84 19.757 584.86 13.2681 338.68 12.5916 

IT 64.853 172.08 69.436 179.75 121.53   

Carbendazim 
SD 2056.5 2399.6 2029.2 2628.5 2278.4 12.5916 

IT 1792.4 1566.2 1888.7 1659.6 1726.7   
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Additional figures of survival predictions across different exposure patterns  1 

 2 

Figure S1:  Model calibration and predictions of GUTS-SIC-SD (panels A-F) and GUTS-SIC-IT (panels G-L) for malathion. Calibrated GUTS-SIC-SD (A) and GUTS-SIC-IT (G) survival over time (solid lines) and 3 
observed survival (symbols: different treatments). Observed (symbols) and simulated survival (black dashed lines: predictions for the optimal parameter sets) at day 4 of the acute tests in concentration-4 
response plots for GUTS-SIC-SD (B) and GUTS-SIC-IT (H). The shaded areas (red or orange) indicate the confidence regions (95% parametric uncertainty, 100% stochasticity, 10000 simulations), while the solid 5 
green line is the median of these predictions. The more intense the red, the more predictions are overlapping. Panels C and I show the observed and simulated survival over time for the exposure type A, as 6 
shown in the left column (M). The last data points in panels C, E, I and K are those shown in panels D, F, J and L, indicating observed survival at day 22 of the pulsed exposure. Panels E and K show survival 7 
over time for exposure type B (N); panels F and L survival at day 22 of these experiments. 8 
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 9 

 10 

Figure S2:  Model calibration and predictions of GUTS-SIC-SD (panels A-F) and GUTS-SIC-IT (panels G-L) for cypermethrin. Calibrated GUTS-SIC-SD (A) and GUTS-SIC-IT (G) survival over time (solid lines) and 11 
observed survival (symbols: different treatments). Observed (symbols) and simulated survival (black dashed lines: predictions for the optimal parameter sets) at day 4 of the acute tests in concentration-12 
response plots for GUTS-SIC-SD (B) and GUTS-SIC-IT (H). The shaded areas (red or orange) indicate the confidence regions (95% parametric uncertainty, 100% stochasticity, 10000 simulations), while the solid 13 
green line is the median of these predictions. The more intense the red, the more predictions are overlapping. Panels C and I show the observed and simulated survival over time for the exposure type A, as 14 
shown in the left column (M). The last data points in panels C, E, I and K are those shown in panels D, F, J and L, indicating observed survival at day 22 of the pulsed exposure. Panels E and K show survival 15 
over time for exposure type B (N); panels F and L survival at day 22 of these experiments. 16 
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 17 

 18 

Figure S3:  Model calibration and predictions of GUTS-SIC-SD (panels A-F) and GUTS-SIC-IT (panels G-L) for carbendazim. Calibrated GUTS-SIC-SD (A) and GUTS-SIC-IT (G) survival over time (solid lines) and 19 
observed survival (symbols: different treatments). Observed (symbols) and simulated survival (black dashed lines: predictions for the optimal parameter sets) at day 4 of the acute tests in concentration-20 
response plots for GUTS-SIC-SD (B) and GUTS-SIC-IT (H). The shaded areas (red or orange) indicate the confidence regions (95% parametric uncertainty, 100% stochasticity, 10000 simulations), while the solid 21 
green line is the median of these predictions. The more intense the red, the more predictions are overlapping. Panels C and I show the observed and simulated survival over time for the exposure type A, as 22 
shown in the left column (M). The last data points in panels C, E, I and K are those shown in panels D, F, J and L, indicating observed survival at day 22 of the pulsed exposure. Panels E and K show survival 23 
over time for exposure type B (N); panels F and L survival at day 22 of these experiments. 24 
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Figure S4:  Model calibration and predictions of GUTS-SIC-SD (panels A-F) and GUTS-SIC-IT (panels G-L) for dimethoate. Calibrated GUTS-SIC-SD (A) and GUTS-SIC-IT (G) survival over time (solid lines) and 26 
observed survival (symbols: different treatments). Observed (symbols) and simulated survival (black dashed lines: predictions for the optimal parameter sets) at day 4 of the acute tests in concentration-27 
response plots for GUTS-SIC-SD (B) and GUTS-SIC-IT (H). The shaded areas (red or orange) indicate the confidence regions (95% parametric uncertainty, 100% stochasticity, 10000 simulations), while the solid 28 
green line is the median of these predictions. The more intense the red, the more predictions are overlapping. Panels C and I show the observed and simulated survival over time for the exposure type A, as 29 
shown in the left column (M). The last data points in panels C, E, I and K are those shown in panels D, F, J and L, indicating observed survival at day 22 of the pulsed exposure. Panels E and K show survival 30 
over time for exposure type B (N); panels F and L survival at day 22 of these experiments 31 

 32 
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Detailed assessment of survival predictions across exposure patterns 

Background 

Exposure concentrations, e.g. in water bodies adjacent to agricultural fields or downstream of 

sewage outlets and wastewater treatment plants, show highly variable dynamics 16, which mainly 

depend on chemical application schemes and entry pathways (e.g. spray drift, surface runoff and 

erosion, or drainage 17) as well as hydrology and weather 18. Standard toxicity tests are designed to 

ensure constant exposure to the chemical over a short test duration and nominal, initially measured, 

or mean measured concentrations are traditionally used to derive effect thresholds. However, field 

exposure patterns often differ from the laboratory situation and require assessing the consequences 

of time-variable exposure patterns on the effect. Toxicokinetic-toxicodynamic models19 such as 

GUTS provide a tool to overcome such limitations, i.e. different temporal pattern and overall 

duration of exposure in toxicity tests and in the field. First, the toxicokinetic-toxicodynamic model is 

calibrated to the toxicity test data where the nominal, initially measured or mean measured 

concentrations generally serve as model driving variable (input), and the observed effects are the 

simulated variable (output). The actual exposure pattern should be represented as accurately as 

possible, preferably by measured concentration time series20. Then the toxicokinetic-toxicodynamic 

model is run with the environmentally relevant exposure profile as model driving variable (input) to 

predict effects in the field (output)9,10. 

Calibration 

Estimated optimal parameter values, likelihood values and confidence limits are provided in the SI 

(Table S14) together with values for the model performance indicator Chi2 (Table S15). Calibration 

data (Figures S1-S4, upper panel) showed different concentration-response patterns for the various 

chemicals, which were all captured by the SD and IT model fits. For cypermethrin, the concentration-

response curve was relatively steep (Figure S2), and the observed mortality at day 4 was adequately 

captured by both IT and SD models and optimal parameter values. Parameter uncertainty, as 

expressed by uncertainty bands of the simulated concentration-response curves, was similar for the 

SD and the IT model. Negative log-likelihood values were similar for the SD and the IT model, and for 

the cypermethrin the smallest for all four compounds. AChE inhibitors malathion (Figure S1) and 

dimethoate (Figure S4) showed shallower concentration-response curve compared to that of 

cypermethrin (Figure S2). Both models tended to underestimate mortalities for intermediate 

concentrations, albeit the SD model gave a better fit to dimethoate data. Uncertainty bands were 

similar in size as those for cypermethrin, and similar between SD and IT. Model error values indicate 

a better fit for malathion than dimethoate. For both compounds, the SD model fitted data better 

than the IT model. For the fungicide carbendazim (Figure S3), survival data displayed an inconsistent 

response: survival for one of the intermediate tested concentrations was similar to that of the 

control. Moreover, the concentration-response curve was shallower than for other compounds. 

These properties of the calibration data set resulted in an increase in parameter uncertainty, as 

reflected in the large uncertainty bands obtained for the probabilistic simulations of both the IT and 

SD models. Also the negative log-likelihood values for carbendazim were larger than for the other 

compounds. 

Prediction 

For assessing the accuracy of our model predictions of the experimentally observed values, we used 

Chi2 values (Table S15). 
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Differences in terms of accuracy and precision of model predictions of survival for the studied 

compounds were obvious. Survival curves for cypermethrin substantially differed between the 

exposure regimes A and B (Figure 2, Figure S2) in the magnitude of effects following the second 

pulse. In the exposure regime A, the second pulse reduced survival from approximately 90% to 20%, 

whereas in the exposure regime B, the effect of the second pulse was smaller, decreasing survival 

from approximately 80% to 40%. The difference between A and B can be explained by the time 

interval between pulses, which may not have been sufficient in regime A to allow for detoxification 

or recovery from internal damage. In regime B, the time interval between the pulses seemed 

sufficiently long to ensure recovery. Indeed, the two pulses appeared to have “independent” effects, 

given that they induced a similar mortality (approximately 20% mortality). Looking at survival over 

time, it appears that both model predictions based on optimal parameter sets underestimated 

experimental mortalities but captured the temporal pattern of the response (Figure 2, Figure S2). 

The medians of the probabilistic simulations were similar to the predictions based on optimal 

parameters. At the end of the pulsed-exposure experiments, observed survival was always 

comprised within the uncertainty ranges for the model (except for the IT model under regime A). 

Partly this is because the uncertainty bands for the SD model were pretty large. Looking at the 

modelled concentration-response curves, it appears that predictions of the 10d survival with a given 

model (IT or SD) were similar for both exposure regimes. This can be explained by the fact that the 

models did not fully reproduce the differences between the pulse regimes (i.e. recovery between 

pulses).  

For both organophosphate insecticides malathion and dimethoate, the survival data were quite 

similar for both exposure regimes A and B. For dimethoate, a regular decrease in survival was 

observed over time, which can be interpreted as no effect of the timing of the second pulse. The 

survival at day 10 was rather similar i.e. 12% and 5% for exposure regimes A and B, respectively. For 

malathion however, each exposure pulse induced an immediate drop of survival, which occurred at 

days 1 and 6 in regime A and at days 1 and 10 in regime B. This decrease in survival was more 

intense after the second peak. Both exposure regimes resulted in survival rates of approximately 

30% at day 10. For both compounds, the SD and the IT model differed in the quality of model 

predictions. The SD model considerably overestimated mortality for both exposure regimes of 

malathion, but matched the experimental survival over time well for dimethoate (see also Chi-

squared values in table S15). The IT model also overestimated mortality for malathion, but to a 

lesser extent than the SD model. On the other hand, the IT model underestimated mortality for 

dimethoate. In all cases, the median of probabilistic simulations and the simulations based on 

optimal parameters were relatively similar. These results are confirmed in the concentration-

response view after 10 days.   

For the fungicide carbendazim, model predictions based on optimal parameters overestimated 

mortality over time for both the SD and the IT model and both exposure regimes A and B. The 

difficulty in calibrating the models based on data leading to a shallow concentration-response curve 

that showed an inconsistent mortality response at lower concentrations levels explains why 

probabilistic predictions of the concentration-response relationship exhibited large uncertainty 

bands. The predicted survival over time showed smaller uncertainty bands presumably because the 

high mortality pushed the maximum predicted survival to zero relatively soon.  
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Materials and methods used for the calculation of interspecies 

variability of effects 

Data and model calibration 
Survival data for malathion was collected from the literature for five vertebrate species, i.e.  Poecilia 

reticulata21, Rana sylvatica22, Clarius gariepinus23 , Rana catesbeiana24, Pimephales promelas 25. The 

“scaled internal concentration” option of GUTS, implemented in Matlab, was used to estimate 

model parameters from individual empirical datasets. Both the individual tolerance model (GUTS-

SIC-IT) and the stochastic death model (GUTS-SIC-SD) were fitted. For the individual tolerance (IT) 

model, a log-logistic median distribution of the threshold was assumed. For model calibration, the 

Nelder-Mead simplex was applied. For each calibration, the lower value of the dominant rate 

constant ( ) was fixed at 0.001 d-1 and the upper value was fixed at 10 d-1. This is a realistic range of 

the dominant rate constant and ensures that the optimization converges within the maximum 

number of iterations. In addition, the background mortality rate (  in d-1) was calibrated on survival 

data. We used an iterative procedure to find the optimum parameter set for a specific species. 

Parameterized GUTS-SIC models were used to run virtual concentration-response experiments 

(using the GUI based version programmed in Delphi) for three exposure scenarios: constant 

exposure, single pulse exposure at day 1 and double pulse exposure at day 1 and 7. LC50s were 

estimated at day 14 of the experiments using the drc package26 in R (R Core Team3). HC5 values were 

determined using MOSAIC_SSD27. 

Best fit parameters for the different species 
Table S16: Mean and confidence limits for GUTS-SIC-SD parameter estimates. 

Species  (d
-1

)  (nmol·L
-1

)  (L·nmol
-1

 d
-1

)  (d
-1

) 

Rana sylvatica 0.001 [0.001 -

0.543] 

1.75 [0 - 828.5 1.8 10
-3

 [3.2 10
-5

 – 

5 10
-3

] 

0.0018 [1.5 10
-5

 – 

0.013] 

Pimephales 

promelas 

1.3 [0.6 - 2.8] 2.7 10
4
 [1.8 10

4
 – 

3.2 10
4
] 

2.2 10
-5

 [1.0 10
-5

 – 

4.0-10
-5

] 

0.009 [0.002 - 0.23] 

Poecila reticulata 1.11 [0.65 - 3.26] 2130 [1919 - 3372] 0.00022 [0.00012 -

0.00039] 

0.0066 [0.00112 -

0.0213] 

Rana catesbeiana 1.64 [0.24 - 10] 5375 [2170 - 6321] 1.1 10
-5

 [2.8 10
-6

 – 

2.2 10
-5

] 

0 [0 - 0.001] 

Clarias gariepinus 2.1 [1.8 - 2.7] 2065 [1971 - 2102] 7.10
-5 

[5.10
-5

 - 9.10
-

5
] 

1.04 10
-16

 [0 - 

0.03816] 

 

Table S17: Mean and confidence limits for GUTS-SIC-IT parameter estimates. 

Species  (d
-1

) a  (nmol) b  (-)  (d
-1

) 

Rana sylvatica 0.001 [0.001 – 

1.293] 

51.23 [32.1 -4692] 2.16 [0.99 – 

168.35] 

0.0044 [3.57·10
-5

 – 

0.0178] 

Pimephales 

promelas 

0.62 [0.30 - 0.97] 2.9 10
-4

 [2.8 10
-4

 – 

4.7 10
-4

] 

5.9 [3.5 - 9.1] 0.008 [0.001 - 0.22] 

Poecila reticulata 0.2291 [0.1322 - 

0.3367] 

2230 [1599 – 2837] 3.904 [0.442 - 

5.515] 

7.117e-15 [0 - 

0.01728] 

Rana catesbeiana 0.12 [0.02 - 0.21] 8105 [4233 - 

11170] 

4.05 [1.58 - 8.48] 0 [0 - 0.0007] 

Clarias gariepinus 0.59 [0.39 - 0.76] 2273 [1962 - 2434] 12.2 [8.1-16.4] 0.026 [0.012 - 

0.046] 
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Survival plots and scaled internal concentrations for the different species 
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Figure S5: Parameterized GUTS-SIC-IT models for five vertebrate species exposed to malathion. Left panel: Survival 

as function of time, dots represent data and lines model simulations. Left panel: modelled scaled internal 

concentration as function of time. 
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Figure S6: Parameterized GUTS-SIC-SD models for five vertebrate species exposed to malathion. Left panel: Survival 

as function of time, dots represent data and lines model simulations. Left panel: modelled scaled internal 

concentration as function of time. 

 

 

  

 

Calculations on synthetic data with Matlab 
Calculations were made with the BYOM framework for Matlab and the GUTS2 package. Both can be 

downloaded free of charge from http://www.debtox.info/byom.html. The GUTS2 package was 

modified to automate the process of loading datasets from file, fitting them, and writing the results 

files. To illustrate the fits on the synthetic data sets, two examples are shown in Figure S9. The 

http://www.debtox.info/byom.html
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Matlab package allows to profile the likelihood function, and in that way create confidence intervals 

on the model parameters. The overall results for each case and each parameter are shown in Figure 

S6. The Matlab results are very similar to the R results. Differences in the confidence intervals relate 

to the differences in approach taken in each package (profile likelihood in Matlab, and Bayesian 

quantiles on the marginal distributions in R).  

Table S18: Model parameters used to generate synthetic data sets. 

Model parameter Value 

Dominant rate constant (ke) 1 d-1 (fixed) 

Median value of the threshold distribution (z) 0.60 nM 

Factor sensitivity differences (Fs) 2 (-) (fixed) 

Killing rate (kk) 0.39 nM-1 d-1 

Background hazard rate (hb) 0.0035 d-1 
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Figure S7: Two example fits with Matlab (best fitting parameter set). Top panels: fit for one replicate data set in Case 1. 
Bottom panels: fit for one replicate data set in Case 4 (same cases as in Fig. S9). Right panels show the predicted curves 
for the scaled internal concentration.  

 

 

 

Figure S8: Parameter estimates; best value with 95% confidence intervals. Dotted horizontal line indicates the true 
parameter value that was used to produce the data sets. Vertical broken line separates the data sets with 8 exposure 
concentrations (left) from those with only 5 (right). Arrows on confidence intervals indicate that the error bar extends 
much further (truncated to improve readability). 

 

 

What is a ‘slow’ dominant rate constant? 
In fitting the different GUTS flavours to the malathion data, it is clear that the dominant rate 

constant ( ) cannot be identified from this data set: the survival pattern is best explained by an 

(almost) linear build-up of the dose metric. This situation of ‘slow kinetics’ is quite common and 

leads to a range of problems, as outlined below. For our synthetic data, starting from a situation of 

slow kinetics is not useful, as we know a priori that we will never be able to identify the parameters 

that we used to generate the data. For that reason, we derived the initial parameter set using a 

slightly different approach. We started by fixing , which provides a situation where we reach 

98% of steady state after four days. 
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If the dominant rate constant ( ) is slow, this means that the dose metric (e.g., the scaled internal 

concentration) increases almost linearly in time. This implies that  cannot be properly identified 

from the survival data (it will get a confidence interval that extends to zero), and that the other 

parameters (  and ) can also not be identified (they become heavily correlated to ). What is 

‘slow’ depends on the test duration: long tests can identify lower  values than short tests. Fig. 1 

shows the relationship between test duration and identifiability of . When 90% of steady state is 

achieved,  can be confidently estimated from the data, and even at only 50% of steady state, this 

is feasible. This implies that in a 4-day test we cannot expect to be able to identify dominant rate 

constants that are below 0.1 d-1. 

 

This situation of ‘slow kinetics’ is quite common and leads to a range of problems. Firstly, 

optimisation routines will not converge on a unique, ‘best’, set of model parameters as all values of 

 below a certain value can produce the same fit (see Figure S8 for the link between this critical 

value of  and test duration). This results in wide confidence intervals of the type . Secondly, 

the other TD model parameters (  and ) will become strongly correlated to , and hence will 

also show wide (half-open) confidence intervals. Several pragmatic strategies are available to deal 

with this situation: 

1) Accept it as is. It is still possible to get a sample from the posterior distribution in this 

situation, which includes the correlations between the parameters. The model predictions 

using this sample do not necessarily suffer from the large uncertainties in each model 

parameter because of these strong correlations. 

2) Set an arbitrary minimum value for the elimination rate, based on practical consideration 

(e.g., the duration of the experiment or the life expectancy of the species). Depending on 

the purpose of the analysis, such arbitrariness may be acceptable. 

3) Use an informed prior to constrain the optimisation. For example, using information from 

related compounds or from body residues. This latter strategy should be used with care, as 

 does not necessarily relate to whole-body internal concentrations. 

4) Reformulate the model to new parameters that can be estimated in this situation. This 

strategy was used in the original DEBtox software28. The number of parameters was reduced 

by one by taking the quotient  and the product  as new parameters. The 

disadvantage is, however, that these new parameters are impossible to interpret 

ecotoxicologically. 
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Figure S9: Relationship between the dominant rate constant and the exposure duration needed to obtain a certain 
percentage of steady state. 
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Figure S10: Two example fits with R (best fitting parameter set). Top panels: fit for one replicate data set in Case 1. 
Bottom panels: fit for one replicate data set in Case 4 (same cases as in Fig. S6). Right panels show the predicted curves 
for the scaled internal concentration. 
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